n®a
TILBURG ¢ }%%j o UNIVERSITY
lffl

AGENT-BASED MODELING OF
AUTONOMOUS AERIAL
WILDFIRE SUPPRESSION

A COMPARATIVE STUDY OF DRONE
SWARMS, TRADITIONAL AIRCRAFT, AND
HYBRID SYSTEMS

KATI SPEIDEL

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
BACHELOR OF SCIENCE IN COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

DEPARTMENT OF
COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE
SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY



STUDENT NUMBER

2095270

COMMITTEE

Dr. Travis J. Wiltshire
Natalie Ranzhi Wei, MSc.

LOCATION

Tilburg University

School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence

Tilburg, The Netherlands

DATE

June 23, 2025
WORD COUNT

8249

ACKNOWLEDGMENTS

Many thanks to my supervisor, Dr. Travis J. Wiltshire, for their invalu-
able guidance and support throughout this research project. I would
also like to express my gratitude to Natalie Ranzhi Wei, MSc., for their
insightful feedback and expertise. Special appreciation goes to my family
and friends for their encouragement and emotional support during this
challenging but rewarding journey. Finally, I acknowledge the open-
source community and the developers of Mesa, Python, and related

libraries that made this research possible.
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TRADITIONAL AIRCRAFT, AND HYBRID SYSTEMS

KAI SPEIDEL

Abstract

Wildfires pose a growing threat resulting from climate change, bio-
diversity loss, and human activity. This research explores economic and
sustainable firefighting approaches using autonomous drone swarms,
traditional aircraft, and hybrid models through agent-based modeling.
A simulation framework created in Python using the Mesa library
evaluates these methods, focusing on cost, sustainability (water, emis-
sions), and computational efficiency. Drones, planes, fires, and resource
stations were modeled as agents with parameters grounded in current
research. Three path-finding algorithms (A*, Ant Colony Optimiza-
tion, and Artificial Bee Colony) were implemented to guide drone
behavior. The framework incorporates machine learning-based risk
assessment to identify high-risk fire zones. This research contributes
an open-source, modular simulation environment for evaluating aerial
firefighting strategies, providing evidence-based insights for sustainable
and efficient wildfire management practices.

“Fach and every one of us can make changes in the way we live our lives
and become part of the solution [to climate change]”

— Al Gore

1 DATA SOURCE, ETHICS, CODE, AND TECHNOLOGY (DSECT)
STATEMENT

This thesis uses only synthetically generated data through custom agent-
based models created in Python using the Mesa library (ter Hoeven et al.,
2025). No external datasets, human/animal data, or consent were required.
Simulation parameters are derived from cited research, and all figures and
visualizations were created by the author using original simulation output.
Code and documentation are available in the GitHub repository (Speidel,
2025).



2 INTRODUCTION

The thesis follows the university’s LaTeX template with Zotero (Corpo-
ration for Digital Scholarship, 2025) for reference management. Generative
AT tools (GitHub Copilot (Microsoft Corporation, 2025), Claude (Anthropic,
2024), ChatGPT (OpenAl, 2023)) were used for feedback on author-created
content, not for direct content generation. All conceptual, experimental, and
implementation work was performed by the author.

2 INTRODUCTION

Wildfires pose an escalating global threat, driven by climate change and
human activity, with 96% of wildfires being human-induced (Canizares et al.,
2017). These events cause ecological, economic, and societal damage (Saffre
et al., 2022), emitting over 2,000 megatons of carbon emissions globally in
2023 alone (Lelis et al., 2024). The UN Environment Program (UNEP)
forecasts a 50% increase by the end of the century in extreme wildfires if
no countermeasures are taken (Sullivan et al., 2022). Escalating wildfire
frequency also threatens agricultural productivity (Intergovernmental Panel
on Climate Change, 2023) and poses significant health risks through smoke
exposure (Finlay et al., 2012). These combined effects make wildfires one of
the most urgent environmental and societal challenges today.

Wildfire research traditionally employs different methodological ap-
proaches, with different advantages and limitations. Historical analysis
creates the foundation of wildfire research. Researchers examine fire records,
satellite imagery, and climate data to identify patterns and correlations
between environmental factors and fire behavior (Jones et al., 2024; Inter-
governmental Panel on Climate Change, 2023). These studies offer valuable
insights into long-term fire cycles and climate relationships, but their retro-
spective nature limits their adaptability to the accelerating climate change.

Controlled wildfire burns offer scientists valuable real-world data about
fire physics and suppression in a controlled environment (Santoni et al.,
2011). These field studies are limited by safety concerns, high costs, and their
impossibility of testing extreme scenarios or comparing multiple suppression
strategies simultaneously.

For decades, traditional aerial firefighting and data collection relied
heavily on manned aircraft such as fixed-wing planes (Janney, 2012). These
aircraft deliver water or fire retardant directly to the fire zones, often in
dangerous conditions with limited visibility. Their effectiveness comes with
safety constraints, high operational costs and substantial carbon emissions
(Spicer et al., 2009).

Recent technological advancements have sparked growing interest in
autonomous drone systems for wildfire suppression. Modern drone technology
potentially offers operation in extreme conditions without risking human
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life, while being lower in costs and emissions. Research done by Yan and
Chen (2024) effectively demonstrates the possibility of using coordinated
swarm behavior to detect forest fires. Current research presents promising
applications, such as new suppression techniques like the “fireball” by Aydin
et al. (2019).

While the development is promising, especially with more applied drone
applications being tested, scientists have also turned to simulation studies as
they provide evidence for fire spread behavior at a lower cost. The fire area
simulator “FARSITE” (Finney and Andrews, 1999), established a baseline
for future work, such as the model proposed by Hu and Ntaimo (2009),
which integrates fire simulation with optimization-based analysis. This is
where Agent-Based Modeling (ABM) plays an important role.

Based on Wilensky and Rand (2015), ABM is defined as a methodology
for conducting computer-based experiments that enables the study of complex
systems by simulating the actions and interactions of autonomous agents
within natural, social, or engineered contexts. These dynamic interactions
generate complex, system-level patterns, commonly referred to as emergent
behavior. In wildfire research, ABM enables researchers to model fires,
suppression vehicles, and environmental factors as independent agents with
distinct behaviors and decision-making capabilities. This approach captures
the emergent properties of complex firefighting scenarios that would be
difficult or impossible to study through traditional analytical methods or real-
world experiments. ABM provides evidence through the analysis of emergent
behavior, which can inform real-world firefighting strategies. Additionally,
it allows for the modeling of dynamic systems where multiple autonomous
agents must coordinate to achieve common objectives under controlled
conditions, making it particularly suited for the goal of this thesis.

Path-finding algorithms are computational methods designed to find
efficient routes between two points in a space, often while avoiding obstacles
or minimizing costs (such as time, distance, or energy). These algorithms
often use heuristics, which are informed problem-solving techniques, to
efficiently explore potential solutions in a solution space under the premise
that exploring every possible solution is computationally infeasible. When
the heuristic is admissible, it guarantees that the algorithm will find an
optimal path (Hart et al., 1968).

As wildfires grow in intensity and frequency, traditional suppression
methods face increasing limitations. Agent-Based Modeling (ABM) presents
a powerful tool for simulating complex scenarios involving autonomous
firefighting drones. However, there is limited research directly comparing
different suppression strategies, such as drone swarms, hybrid systems, and
traditional aircraft, within the same simulation environment.
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2.1 Research Question

Given the evident need for sustainable wildfire suppression and promising
potential of autonomous approaches, this research addresses the following
question:

How can agent-based modeling be used to evaluate and optimize
autonomous aerial wildfire suppression strategies across drone,
plane, and hybrid systems, using path-finding algorithms to assess
effectiveness, efficiency, and sustainability?

Accordingly, the following sub-questions are addressed:

RQ1 How do path-finding algorithms influence the firefighting performance
of drone swarms in ABMs?

RQ2 How do drone swarms, hybrid systems, and planes compare in wildfire
suppression?

RQ3 What trade-offs emerge among suppression effectiveness, efficiency and
sustainability ?

2.2 Findings

This thesis presents a robust open-source agent-based simulation framework
developed in Python using the Mesa library. Its object-oriented and well-
documented architecture promotes interdisciplinary research. The framework
provides researchers and relevant stakeholders, such as policymakers, emer-
gency response planners, and environmental scientists, with a flexible tool to
build on top of and evaluate custom aerial vehicle models and coordination
strategies across a range of simulated scenarios. Its public availability offers
benefit, especially in resource-limited regions, by enabling access to advanced
simulation and planning tools.

In the scope of this thesis, autonomous drone swarms, firefighting planes,
and a hybrid system are simulated. These approaches have been compared,
focusing on effectiveness, cost, emissions, and water usage. The results
indicate intricate patterns emerging from different approaches, showing that
that hybrid systems might offer the best trade-off regarding effectiveness
and sustainability.
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3 RELATED WORK
3.1 The Importance of preventing Wildfires

As previously mentioned, wildfires are increasing in frequency and intensity,
creating devastating destruction. In addition to ecological damage, the
economic impact is substantial. While the annual cost of wildfire management
in the U.S. is estimated to range from $7.6 billion to $62.8 billion, the
economic damage is estimated between $63.5 billion to $285.0 billion (Afghah
et al., 2019). This highlights the need for practical, cost-effective and
quick solutions. Pursuing sustainable approaches is essential, as traditional
methods are costly and emit a lot of COg (Saffre et al., 2022). The ecological
consequences, especially on the agricultural sector, are recognized as a
societal threat (Steiner et al., 2020; Intergovernmental Panel on Climate
Change, 2023).

3.2  Traditional Methods

Aerial firefighting, introduced in the 1950s using repurposed military aircraft,
evolved significantly in the 1960s with the introduction of specialized tactics
and retardants (Janney, 2012; Struminska and Filippone, 2024). These
methods advancements enabled access to remote areas feasible and led to
the development of aircraft specifically for firefighting roles (Struminska and
Filippone, 2024; Corporation, 2018). Modern fleets include a range of aerial
vehicles for specific operational tasks (Aviation, 2018).

Despite their effectiveness, these methods are costly, risky for the crew
involved, and operationally demanding (Struminska and Filippone, 2024,
p. 1896). Emissions from aircraft like the C-130 Hercules are immense and
difficult to quantify (aviationzone, 2022; Spicer et al., 2009). Coordination
and situational awareness limitations, especially under smoke, wind, and tur-
bulence, further complicate human-led missions (Struminska and Filippone,
2024). These challenges motivate the study of autonomous systems, which
promise real-time data sharing, coordinated swarm behavior, and quick
adaptation to changing fire conditions. Given the increasing frequency and
intensity of wildfires (Jones et al., 2024; Intergovernmental Panel on Climate
Change, 2023; Steiner et al., 2020), the development of more responsive and
autonomous strategies is of high importance.

3.3  Emergence of Drone-Based Solutions

With advancement of global technologies in recent years, drone systems went
through significant development in terms of functionality and operational
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capabilities. Unmanned Aerial Vehicles (UAV) are increasingly integrated
across a range of industrial sectors, including agriculture, healthcare, logis-
tics, and military operations (Emimi et al., 2023). Their main advantages
are adaptability, precision, and cost-efficiency, however these benefits are
accompanied by persistent regulatory, operational, and ethical challenges
(Emimi et al., 2023).

The research conducted by Saffre et al. (2022) demonstrates that au-
tonomous drone swarms are capable of effectively containing wildfires while
also reducing greenhouse gas emissions compared to traditional methods
(Saffre et al., 2022). In addition, drones are increasingly recognized for their
energy efficiency, making them a promising solution for sustainable disaster
response strategies (Stolaroff et al., 2018).

Emerging drone-specific firefighting techniques further expand the poten-
tial of UAVs in this domain. For example, the “Firefighting Ball” present a
novel condemning technology designed specifically for aerial deployment via
drones (Aydin et al., 2019). Building upon this, an autonomous system that
integrates the fireball concept into a coordinated drone-based suppression
framework got introduced (Alkhatib et al., 2024).

The effectiveness of drone-based firefighting systems is evident, specifically
in terms of cost-efficiency and lower emissions. However, for these systems
to achieve optimal performance, early wildfire detection is crucial. Fast and
confident identification of fire outbreaks is one of the most critical factors in
minimizing damage, especially during the initial stages of a wildfire event
(Sudhakar et al., 2020). In comparison, traditional risk assessment measures
are delayed and have low confidence, especially in remote areas (Afghah
et al., 2019), highlighting the potential for improvement in autonomous data
collection (Lelis et al., 2024) with drones.

The low cost and compact size of drones also make simultaneous de-
ployment of multiple units possible, therefore enabling coordinated swarm
behavior, which is a logical progression in UAV-based wildfire management
(Hocraffer and Nam, 2017).

Swarm behavior supports the application of bio-inspired algorithms,
such as Ant Colony Optimization (Canizares et al., 2017) and Artificial
Bee Colony algorithms (Karaboga and Basturk, 2007), which increase in
effectiveness as swarm size increases. These algorithms allow drones to effi-
ciently compute optimal paths to fire sites, managing speed and resource use.
Hocraffer and Nam (2017) identified this growing research area to become
increasingly important in addressing complex real-world challenges such as
wildfire detection and suppression. While the physical and algorithmic capa-
bilities of drones develop rapidly, coordinating a swarm of autonomous UAVs
in uncertain environments, especially extreme ones such as wildfire zones,
remains a significant challenge. These systems involve many interacting
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agents reacting to various parameters. This introduces a level of behavioral
and environmental complexity that is difficult to model using top-down or
deterministic approaches. As a result ABM offers a framework to simulate
and test swarm coordination strategies in complex domains like wildfire
suppression.

3.4 Agent-Based Modeling

ABM is a computational methodology used for conducting experiments that
enable the study of complex systems by simulating actions and interactions
of autonomous agents within different domains (Wilensky and Rand, 2015).
Each agent follows a set of simple rules, and through repeated interaction
with other agents and their environment, “sustainable patterns can emerge
in systems that are completely described by simple rules” (Macal and North,
2005, p.5). These dynamic interactions generate complex, system-level
patterns, commonly referred to as emergent behavior. These emergent
patterns reveal dynamics that are difficult to predict analytically, providing
valuable insights for informed decision-making.

ABM is grounded in the principles of complexity theory, which studies
how individual agents interact within a system, leading to emergent behav-
iors and patterns. As Wilensky and Rand (2015) explained, complexity
theory provides a framework for understanding systems in which “order
emerges without central control”, making it specifically relevant for wildfire
management, where conditions are dynamic and decisions must be made in
real time without centralized control. By modeling planes and drones as au-
tonomous agents, ABM provides a framework where each agent is equipped
with its own sensors, movement capabilities, and objectives (e.g., resource
management or fire suppression). The simulated environment can be defined
and modeled to represent real-world elements such as terrain, vegetation,
and fire spread mechanics, making it a powerful tool for investigating wildfire
response strategies.

NetLogo’s “Forest Fire” simulation demonstrates how simple ignition
and spread rules can mimic the dynamic growth of wildfires (Wilensky and
Rand, 2015). Recent implementations demonstrated ABM as a valuable
tool to understand forest fires through simulating complex environments
and testing different suppression strategies. For instance, Moreno-Espino
et al. (2025) applies ABM through the GAMA platform (Taillandier et al.,
2019) to simulate wildfire propagation by modeling fire cells, vegetation,
and weather as interacting agents. Their approach integrates geographic
data, reflecting real-world terrain, highlighting how environmental variables
like wind speed influence fire spread and intensity. Similarly, Dorrer and
Yarovoy (2020) presented an ABM that integrates a simulated environment
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onto actual terrain data, combining both fire agents and firefighting agents.
Their model provides insights into fire control strategies by demonstrating
how emergent behaviors from the agents’ interaction with the spreading fire
can give evidence for informed resource allocation and decision-making.

These studies demonstrate the relevance of ABM in capturing the dy-
namics of wildfire events. Building on this foundation, this thesis takes a
comparative approach to evaluate coordination strategies by contrasting
autonomous drone systems with plane only and hybrid models. However, the
effectiveness of autonomous drone swarms in ABM simulations for wildfire
suppression depends on the path-finding algorithms which dictate the agents
movement and coordination strategies.

3.5 Path-finding Algorithms

In the context of this thesis, path-finding algorithms are designed to enable
the agents to balance competing objectives: minimizing travel time to fire
sites, avoid collisions with other agents, and reducing resource consumption,
all while adapting to dynamic fire spread.

A* SEARCH The A* algorithm, introduced by Hart et al. (1968), is the
foundation of modern heuristic path-finding, It calculates:

f(n) = g(n) + h(n) (1)

where g(n) represents the actual cost from the start node to node n,
and h(n) is the heuristic estimate of the cost from node n to the goal.
When the heuristic h(n) is admissible (never overestimates the true cost)
and consistent, A* guarantees finding the shortest path while expanding
fewer nodes than uninformed search methods (Hart et al., 1968). While A*
performs well in known environments, it faces limitations in dynamic scenar-
ios where conditions change rapidly and multiple agents must coordinate
simultaneously.

This is where nature-inspired algorithms offer an alternative. Nature-
inspired path-finding algorithms draw their inspiration and theoretical con-
cepts from biological systems that exhibit efficient collective navigation and
optimization behaviors. These approaches are specifically valuable in wild-
fire suppression contexts because they enable decentralized decision-making,
adaptive behavior, and emergent coordination, making them essential for
effective swarm operations in unpredictable environments.

ANT COLONY OPTIMIZATION (ACO) mimics the foraging behavior of
ant colonies, where individual ants leave pheromone trails to guide other
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ants towards food sources (Dorigo et al., 1996). The original ACO algorithm,
developed by Dorigo et al. (1996), has since been applied across various
optimization domains (Dorigo and Stiitzle, 2019). In drone applications,
virtual pheromones can represent fire intensity levels or successful suppression
paths. This mechanism enables drones to converge on high-priority areas
while maintaining swarm coordination. Caiizares et al. (2017) demonstrates
how ACO can be applied in wildfire scenarios by developing a system
that coordinates multiple agents for fire prevention and mitigation. ACO’s
main advantage lies in its ability to find near-optimal solutions through
emergent collective intelligence without requiring centralized control, making
it perfectly suitable for wildfire suppression in ABM simulations.

ARTIFICIAL BEE COLONY (ABC) is a swarm-based meta-heuristic
algorithm. Inspired by the behavior of honeybee swarms, the algorithm
simulates the decision-making processes of honeybee colonies during nectar
foraging (Karaboga and Basturk, 2007). The algorithm divides the swarm
into three types of bees: employed bees that exploit existing food sources,
onlooker bees that select among these sources based on information shared
by employed bees, and scout bees that search for new food sources randomly
when existing ones are exhausted (Karaboga and Basturk, 2007). In wildfire
suppression contexts, this translates to drones that can exploit known fire
locations (employed behavior), explore new fire areas based on information
from other drones (onlooker behavior), and conduct random searches when no
fires are detected (scout behavior). This behavioral division enables effective
load balancing between exploitation of current fire sites and exploration of
potential new outbreaks. This property highlights the strength of ABC,
which lies in its inherent balance of exploration and exploitation, making
it particularly useful for dynamic environments where fire conditions and
resource availability change rapidly.

These nature-inspired algorithms provide the needed computational foun-
dation for autonomous coordination. However, as demonstrated in the
following sections the integration of human oversight with the mentioned
autonomous capabilities can further enhance system performance and adapt-
ability.

3.6  Human-Drone Teaming

As the complexity of drone systems is increasing, maintaining effective
coordination presents a growing trade-off between autonomy, control, and
performance. Human drone teaming (HDT) offers a promising middle
ground by balancing centralized oversight with distributed decision-making
(Asavasirikulkij and Hanif, 2023). Integrating humans into the loop enhances
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strategy flexibility while reducing cognitive load. Chen and Barnes (2014)
demonstrate that systems, where human operators oversee multiple UAVs
and intervene only when necessary, enhance both situational awareness
and mission reliability. This supervised control enables operators to make
strategic decisions without managing each drone independently, thus reducing
cognitive load and improving the flexibility of the operation. Similarly,
Lewis et al. (2012) show that human operators can effectively direct swarm
behavior by influencing a subset of agents rather than all agents at once.
These findings suggest that humans are essential for providing strategic
decisions and maintaining oversight, while autonomous systems manage local
coordination and provide situational data. This division of tasks supports
flexible and informed decision-making in a highly complex environment. In
this thesis, such interactions are explored in a simulated ABM environment,
where the agents provide data about the dynamic environment and respond
to changing conditions. The emergent interactions and collected data can be
used for informed decision-making by providing evidence about drone and
plane behavior.

3.7 Summary

While ABM research is growing especially in the field of swarm behavior and
novel techniques to apply UAVs in extreme situations, a research gap remains
in comparative simulation studies that evaluate different aerial firefighting
techniques within the same framework. Current literature often focuses on
individual aspects instead of systematic comparative analysis.

Furthermore, while nature-inspired path-finding algorithms show promise
for autonomous coordination, their practical application and comparative
performance in wildfire suppression scenarios remain underexplored in ABM.
This thesis addresses these gaps by developing a comprehensive simulation
environment that enables direct comparison of autonomous drone systems,
traditional aircraft, and hybrid approaches, while integrating path-finding
algorithms to evaluate their combined impact on suppression effectiveness
and sustainability. Sustainability is assessed using metrics water consump-
tion, carbon emissions (kg CO2), and operational costs as metrics (see
Methodology section).

4 METHODOLOGY

This study uses a simulation-based approach to evaluate different suppression
strategies. At its core, the methodology involves agent-based modeling, path-
finding algorithms, and machine learning-based risk analysis. The goal is
to determine the operational, environmental, and economic effectiveness of

10
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drones, planes, and hybrid firefighting systems. All simulations are created
using Mesa (ter Hoeven et al., 2025), as it is ideal to study complex emergent
behavior. Given the complexity inherent in agent-based simulation studies, a
detailed description of the initialization process and agent setup is provided
to ensure clarity, reproducibility, and transparency.

4.1  Simulation Design and Setup

ENVIRONMENT The simulated environment consists of a 250x250 dis-
crete grid (62,500 total cells) representing the landscape where wildfire events
occur, where one cell is equivalent to 10 meters. This creates a simulation
area of 2.5 km x 2.5 km (6.25 km?), representing a realistic wildfire sce-
nario. This grid size was selected to balance computational efficiency while
maintaining an appropriate size for meaningful agent interactions and fire
dynamics. Each cell tracks state information about occupancy status, fire
state, and resource station allocation. The simulation proceeds in predefined
steps (1000). Fires can ignite, grow in intensity, and spread to adjacent cells
probabilistically. Fire suppression agents attempt to extinguish them while
managing internal resource constraints. (e.g., water supply, energy).

AGENT CONFIGURATION To answer RQ2’s comparative research focus,
the simulation employs three different suppression approaches, following
ABM methodology introduced by Wilensky and Rand (2015).

1. Drone-only approach: 30 autonomous drone agents are employed.
Reflecting a frequently used swarm size in swarm optimization studies
(Zmax = 30) (Kozlov et al., 2022, 2024). This size ensures meaningful
coordination strategies while balancing computational efficiency. The
drones are initiated with an individual water capacity of 50 L which
results in a total swarm capacity of 1500L. RQ1 is addressed by
comparing different path-finding algorithms and analyzing how their
distinct behaviors influence emergent wildfire suppression outcomes.

2. Plane-Only: 4 firefighting aircraft are employed, reflecting a realistic
firefighting fleet in extreme scenarios (Sherry and Chaudhari, 2025).
Given an individual water capacity of 18 184 L per plane, the total fleet
capacity is 72736 L. Considering that firefighting planes are the most
used suppression technique, this approach acts as a baseline for the
comparative assessment of RQ2.

3. Hybrid approach: 20 drones + 5 planes + 3 runways. This hybrid
approach employs both firefighting aircraft and drone agents, which
enables coordination testing between heterogeneous agents. Given

11
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20 drones and 5 planes, the combined capacity is 92920 L (2000 L +
90920 L). This approach directly addresses RQ2’s systematic compari-
son and RQ3’s optimization potential.

The significantly different water capacities of the different approaches are
intentional and reflect the limitations and advantages of each agent’s archi-
tecture. This strategy is chosen to reflect real-world operational constraints,
such as the limited carrying capacity of drones. The deployment frequency
requirements, where 30 drones require coordinated refilling patterns, directly
affect swarm coordination patterns relevant to RQ1’s path-finding algo-
rithm assessment. Furthermore, the different fuel and energy consumption
profiles per unit of firefighting capacity provide essential data for RQ3’s
environmental impact evaluation.

This experimental design establishes a comparative framework for evalu-
ating wildfire suppression techniques while directly addressing RQ3’s central
question about trade-offs among suppression effectiveness, efficiency, and
sustainability. By maintaining realistic capacity differences, the simulation
enables assessment of whether nature-inspired path-finding algorithms can
achieve superior cost-effectiveness and environmental performance despite
significantly lower individual water capacity. This approach specifically
evaluates RQ3’s sustainability trade-offs by comparing operational costs,
environmental impact in kg COg, and resource utilization efficiency (water
usage per successful suppression) across drone, plane, and hybrid approaches,
potentially demonstrating the sustainable advantages of drone approaches
over traditional aircraft methods.

4.2  Agent Design and Setup

Each approach was tested across 1000 independent simulation runs of 1000
steps each, providing statistical power for comparison. The initialization
of the model is illustrated in Appendix 7. For the simulation, multiple
agent classes are implemented: drone, plane, fire, water station, recharge
station, and a runway class. Each agent acts based on internal logic and
interacts with the environment according to its proper- ties. The agents
were developed following the principles of Situation Awareness-Based Agent
Transparency (SAT)(see Chen et al., 2018, Figure 1), building on the original
framework introduced by Chen and Barnes (2014). The agent_data collects
data at each simulation step and offers insight into the agent’s internal state,
collecting its goals and actions (SAT Level 1), reasoning (SAT Level 2),
and projections (SAT Level 3), as reflected in its chosen paths, performance
history, and resources.

12
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4.2.1 Drone Agent

The Drone Agent simulates an autonomous firefighting drone designed to
locate and extinguish fires while managing resource constraints. The agent
incorporates nature-inspired path-finding algorithms, resource management
systems, and decision-making mechanisms to simulate realistic drone behavior
in firefighting scenarios. To ground the findings in realistic conditions,
the parameters are based on the “DJI AGRAS T50” agricultural drone
(DJI, 2025). The agent is fully parametric, allowing for customization and
implementation of other drones.

DECISION-MAKING ARCHITECTURE The drone agent uses a state-
based decision architecture that determines its behavior based on current
conditions and resource levels. The decision-making framework, illustrated
in Figure 1, consists of three primary components:

1. State Assessment: The drone continuously monitors its current state,
including position, resource levels (energy and water), and environ-
mental conditions.

2. Mode Determination: Based on the state assessment, the drone deter-
mines its operational mode through the determine_mode () method,
which acts as the central decision point.

3. Action Execution: Once a mode is selected, corresponding action
methods are executed, such as path-finding, recharging or firefighting.

RESOURCE MANAGEMENT The Drone Agent monitors its two critical
metrics constantly:

e Water: Which is used for fire-fighting and released on fire site, as
shown in Figure 1: when falling bellow a certain water threshold (35%
capacity) the Drones’ priority becomes to refill the water and find the
closest water station.

e Energy: In addition to the Water levels the Drone keeps constant
track of its own energy levels and based on the same logic makes
sure to not run out of energy, hence when the energy level falls below
the predefined energy Threshold (40% of full capacity) it prioritizes
locating and finding the closest recharge station.

PATH-FINDING  One of the three implemented path-finding methods is
chosen: A* search, Artificial Bee Colony, or Ant Colony Optimization. The
path-finding process follows a structured protocol: the target identification
first determines the closest target based on the drone’s current needs: “fire”

13
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(suppression), “recharge” (energy), “refill” (water), or “runway” (plane-
specific operation). The selected target coordinates are then passed to
self.calculate_path(start, goal) to compute the optimal route using
the specified path-finding algorithm. Once a valid path is successfully
calculated, it is executed through self .move_along_path().

FIREFIGHTING The firefighting ability of the Drone is handled through
the apply_water () function. Given that the Drone is at the fire location,
the water gets applied respecting the water threshold and water drop rate
of the drone.

4.2.2 Water Station

Water stations are key infrastructure agents responsible for refilling the
drone. Each station has a limited refill rate, introducing a time cost to
each interaction. Water usage data per refill is collected for each agent,
and the refill interaction contributes to total operational cost and emissions.
Placement of water stations influences overall suppression efficiency and
is therefore predefined to ensure comparability between approaches. The
chosen parameters can be observed in Table 7 in the Appendix.

4.2.3 Recharge Station

Environmental sustainability presents a primary design consideration for
the recharge station network. Each station’s operations are characterized by
an emissions factor of 0.200 kg CO5 per kWh provided, based on research
conducted by Stolaroff et al. (2018), which compares the energy efficiency of
different drone delivery systems. It is important to highlight that emissions
caused by green electricity generated through solar panels highly fluctuate
and can range from “40g to 180g of COy per kWh for PV” (Fthenakis and
Kim, 2007), depending on various factors. For simplicity reasons the value
proposed by Stolaroff et al. (2018) will be used to calculate recharge related
emissions. The electricity cost is based on the EU average of 2023 (eurostat,
2024), with a value of 0.2872 euro per kWh. total_energy_provided and
recharge_event are metrics to calculate the usage of the recharge station
and can be used for more in-depth analytics. The chosen parameters are
illustrated in Table 8 in the Appendix.

14
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Table 1: Key parameters and values used in configuring the drone agent

Parameter Value

Description

Navigation & Targeting

location None
goal None
path [pos]
typ “drone”
current_target Fire
target_ type Fire
target_ fire pos[x,y]

Current position of the drone (x,y)
Target destination for the drone
Current calculated path to destination
Type identifier for data collection
Current object being targeted

Type of target (fire, water, energy)
Specific fire being targeted

Water € Energy Systems
water__capacity 50 L
water threshold  35%

Maximum water storage (DJI, 2025)
Minimum water level before refill
Current water level (starts full)
Water used per firefighting action
Total water used in firefighting
Maximum battery capacity

Current energy level

Minimum energy before recharge
Boolean indicating recharge status

Boolean indicating active firefighting
Steps spent at current fire

Weight with battery (DJI, 2025)
Current payload weight

Total weight (base + payload)

Base emission rate per movement
Cumulative emissions produced
Base operational cost per step
Cost per energy unit consumed

water 50 L
water_drop_rate 3.0 L
water used 0.0 L
max__energy 100
energy 100
energy threshold 40%
recharging T/F
Operation € Physical
firefighting T/F
time at fire 0
weight 52 kg
payload 0 kg
total _weight 52 kg
Cost & Environmental Impact
emission rate 0.05
total _emission 0.0
cost__per__step 0.02
energy_ cost 0.05
total cost 0.0

Accumulated operational costs
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Figure 1: Flowchart of the drone agent’s decision-making process
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4 METHODOLOGY

4.2.4  Firefighting Plane

The simulation framework incorporates manned aircraft as a benchmark
to evaluate drone-based firefighting solutions. The Lockheed Martin C-130
Hercules was chosen as the reference platform due to its proven opera-
tional history, widespread use in aerial firefighting, and well-documented
performance characteristics (aviationzone, 2022). As a repurposed military
transport aircraft, the C-130 represents a conventional approach to wildfire
management, providing a solid baseline for assessing the effectiveness of
emerging drone-based strategies (RQ2). Due to its military design heritage,
it offers the capability to carry heavy payloads and has proven itself in relia-
bility. The C-130 aircraft, used as a reference for the firefighting plane, has
an estimated range of 2047 M = 3791 km with max payload and 4522 M =
8375 km with an empty payload (aviationzone, 2022). Considering simplicity,
the simulation assumes an average range of 6000 km given the fact that the
plane is full and empty based on whether the water was dropped or is being
delivered to the fire site. Considering these metrics, a fuel consumption of
6 L/km is calculated.

36000 L

SOV 6 L/k
6000 ko — 0 L/km

Fuel Consumption per km =

Given a drone speed of 1 field per step, which accounts for 36 km/h (DJI,

2025) (equivalent to 10 m/s). Therefore, the speed of the plane needs to be

normalized. In comparison, the C-130 has a cruising speed of 600 km/h

(aviationzone, 2022) (or 167 m/s), considering that the speed for firefighting

is significantly lower, a speed of 250 km/h (= 69.4 m/s) is chosen, resulting
in a relative speed factor of:

70m/s
10m/s

(2)

Speed Factor =

Therefore, the speed of the plane is defined by the value 7 (positions per
step) This factor is used to scale operational parameters when comparing
drone and plane behavior within the simulation. To calculate the fuel
consumption with a speed of 250 km/h (= 69.4 m/s), and simulation steps
defined as 1-second intervals:

250
Fuel Consumption per Step = (6 L/km) x km/s = 0.417 L/step

3600

The emission rate of the firefighting plane is based on data from Spicer
et al. (2009), which reports an emission of approximately 0.3073 kg COq

17



4 METHODOLOGY

for every kilogram of fuel consumed assuming Jet-A fuel with a density of
0.8 kg/L. The emission per step is calculated as follows:

kg CO4 0.8 kg fuel

kg fuel ’

= 0.24584 ke €Oy

Emission per Liter = 0.3073

kg CO
Emissions per Step = 0.417 L/step x 0.24584 % = 0.1025 kg CO,

As stated by Spicer et al. (2009) is it important to point out that the
emissions fluctuate significantly depending on cruising speed and weather con-
ditions. For simplicity reasons, the emissions per step are a fixed parameter
calculated as mentioned.

In addition to similar parameters, the logic of the plane also works
differently. A key difference is the plane-specific interaction with the runway
class, simulating refueling, takeoff, and landing behavior. A key difference
between the plane and drone class is its characteristic behavior; the drone
has a smaller turning radius and is able to refuel from the resource stations
autonomously, whereas the plane is dependent on a runway in order to refuel
water and fuel. In addition, the emissions are expected to be much higher
because it runs on fossil fuels and not electricity. However, the plane moves
faster and has a higher water loading capacity, which enables it, in theory
to extinguish fires faster.

4.2.5 Runway Agent

The runway agent is created specifically for the firefighting plane. A plane
needs a runway to start, takeoff, and refill fuel and water, contradictory
to a drone, which can autonomously refill itself and charge itself through
a given station. The runway is implemented to ensure a logical approach
to real-world firefighting models. It is kept track of whether the runway
is currently occupied to make sure multiple planes do not collide. The
parameters of the runway class are explained in Table 10 in the Appendix.

4.2.6 Fire Agent

The fire agent has customizable parameters, which allow for complex interac-
tions with the firefighting vehicles. To mimic the real world, the fire agents
spawn in the environment with different intensities and have the possibility
to spread to a neighboring cell. The spread fire is its own agent with a slightly
lower intensity. Through functions such as apply_water(water_amount)
the fire agent receives water from the given firefighting agent and extin-
guishes. When fire spreads to neighboring cells, new fire agents are created,
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4 METHODOLOGY

meaning that a higher fire count reflects fire area growth rather than the

ignition of new fires. The parameters can be observed in Table 9 in the

Appendix.

Table 2: Firefighting Plane Class Parameters

Parameter Value

Description

Basic Parameters

unique_ id int

typ “plane”
location None
goal None
path [list]
speed 7

Unique identifier for the plane agent
Agent type identifier

Current position of the plane
Target destination

Calculated path to destination
Movement cells per step

Resource Parameters
water__capacity 18184 L

water 2000
water threshold 500
water__used 0

water_drop_rate 8.328L/s
fuel__capacity 3600 L
fuel 1000

fuel threshold 200

= 4000 gallons (C-130) (Corporation, 2018)
Current water level

Minimum water level before refill

Total water used during operations

= 2200 gallons/s (C-130)

= 9530 gallons (aviationzone, 2022)
Current fuel level

Minimum fuel level before refueling

Time and State Parameters

refill time 10
refueling T/F
time at_fire 0

max_time at fire2

Time steps required to refill water
Boolean indicating refueling state
Time spent at current fire

Maximum time to spend at a fire

Environmental Impact & Cost

emission_ rate 0.24584
total emission 0.0
operational cost 0.5
fuel cost 0.1
total cost 0.0

Kg CO2 / L fuel (Spicer et al., 2009)
Cumulative emissions produced
Base operational cost per step

Cost per unit of fuel

Cumulative operational cost

Target References
current__target None
target_ fire None
fires [list]
firefighting T/F

Current target object (fire, runway, etc.)
Reference to the specific fire being targeted
List of all known fires

Boolean indicating firefighting state
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Figure 2: Flowchart of the plane agent’s decision-making process
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4.3  Path-finding Algorithms

Each drone selects paths using one of the following algorithms:

1. A* Search: Heuristic-based algorithm with low resource usage. Efficient
for small or structured environments. Implemented through the heapq
Python library (Foundation, 2024).

2. Artificial Bee Colony (ABC): Swarm-inspired, decentralized optimiza-
tion method effective in dynamic or noisy spaces (Karaboga and Bas-
turk, 2007).

3. Ant Colony Optimization (ACO): Probabilistic method using pheromone
trails to discover optimal paths over time (Dorigo et al., 1996).

The same algorithm is used for all drones within a simulation run to ensure
internal consistency. All algorithms are tested across otherwise identical
parameters to evaluate comparative performance. These were selected based
on experimentation and prior research.

4.4  Data-Collection

The simulation is created with the SAT model in mind. Therefore, robust
and extensive data collection is needed. At every step every agent’s prop-
erties are stored in the agent_data dataframe and the model’s properties
in the model_data data-frame. This data collection is enabled through the
mesa.datacollection.DataCollector which is part of the Mesa frame-
work. agent_reporters and model_reporters make this function possible.
Extensive details can be found in the GitHub repository.

4.5 Risk Assessment with Machine Learning

To address the main research question of how agent-based modeling can
be used to evaluate and optimize autonomous aerial wildfire suppression
strategies, two unsupervised learning methods, DBSCAN and K-Means,
were implemented for exploratory analysis. This analysis aims to investigate
whether simulation outputs contain meaningful patterns that could support
more advanced analysis and agent decision-making in future research, rather
than direct comparisons between suppression approaches.

1. DBSCAN (Ester et al., 1996): A density-based clustering algorithm to
identify spatial risk zone and corrdination patterns.

2. K-Means (Lloyd, 1982): A centroid-based algorithm to segment envi-
ronments based on fire intensity and suppression delay.
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This exploratory machine learning clustering analysis serves as a proof-
of-concept, demonstrating that the ABM framework generates informative
emergent patterns, which can be used for further investigation. These
algorithms were applied to simulation data capturing fire intensity, sup-
pression history, and spatial coordinates. The main algorithm used was
DBSCAN, with falling back to K-Means if DBSCAN failed to converge.
Default scikit-learn parameters were used (Pedregosa et al., 2011), with
basic preprocessing (normalization and NaN filtering). The clustering results
are presented as a foundation for future research where risk assessment is
used as a tool to guide agent behavior.

4.6 Technical Implementation and Reproducibility

Table 3: Technical Implementation Details

Component Details
Language Python 3.11 (Foundation, 2022)

Mesa (ter Hoeven et al., 2025)

NumPy (Harris et al., 2020)

Pandas (pandas development team, 2020)
Matplotlib (Hunter, 2007)

Seaborn (Waskom, 2021)

Scikit-learn (Pedregosa et al., 2011)

Key Packages

Dependencies Complete list in requirements.txt

Repository GitHub Repository (Speidel, 2025)

The entire simulation is designed to be reproducible and configurable. All
agent parameters, environment size, and algorithm settings can be controlled
via parameters.

4.7  FExpected Outcomes and Performance Metrics

Based on the research questions and experimental setup, this research
evaluates the different approaches using the metrics described in Table 4
Drone swarms are expected to demonstrate superior cost-effectiveness
and lower environmental impact with higher coordination complexity, in line
with their individual capacity limitations. In contrast, the plane approach is
likely to be the least sustainable but most capable at wildfire suppression.
Hybrid systems may offer optimal trade-offs between suppression speed and
sustainability. The machine learning model analysis is expected to reveal
operational patterns that could inform future decision-making strategies.
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Metric Definition

Effectiveness Time steps required until successful fire
suppression (Section 5.2)

Efficiency Total accumulated operational cost in eu-
ros (€) (see Section 10)

Sustainability Resource analysis of total CO5 emissions

in (kg) and water consumption in (L) (see
Section 5.3)

Path-finding Performance Comparative analysis based on effective-
ness, efficiency and sustainability across
A* ACO, and ABC algorithms (see Sec-
tion 5.1)

Trade-off Analysis Scenarios with higher effectiveness (faster
suppression) may exhibit lower sustainabil-
ity (higher emissions/costs). However, the
containment of wildfires has the highest
priority.

Table 4: Explanation of performance metrics in relation to the study objectives

The performance of the path-finding algorithms is expected to reveal that
the A* algorithm performs well in structured environments, while ACO and
ABC excel in more dynamic environments. These hypotheses are based on
the simulation architecture, agent properties, and path-finding behavior.

5 RESULTS

The following section presents the simulation outcomes in alignment with
the three research sub-questions. First, the influence of different path-
finding algorithms on the movement and coordination of drone agents is
evaluated (RQ1). This is followed by a comparative analysis of suppression
performance across drone-based, plane-only, and hybrid configurations (RQ2).
Lastly, trade-offs between suppression effectiveness, operational efficiency,
and sustainability—measured through CO, emissions, water consumption,
and cost-are assessed (RQ3). These results provide a structured basis for
understanding how agent-based modeling can be applied to evaluate and
optimize autonomous aerial wildfire suppression strategies.

5.1 Path-Finding

To address the main research question and RQ2, it is necessary to first
present the results addressing RQ1, which investigates the performance
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of different path-finding algorithms. The simulation provides clear visual
evidence that each algorithm employs a distinct movement strategy. In the
visualizations, each drone’s path is depicted as a blue line, recharge stations
are shown as yellow circles, and water stations as blue circles. Separate figures
are dedicated to A* 3, Ant Colony Optimization (ACO) 4 and Artificial
Bee Colony (ABC) 5, each illustrating the algorithm’s trajectory under
identical initial fire conditions (fires_n = 50), respecting model complexity
considerations 5.4. Each plot is generated after 1000 simulation steps. It
is important to note that results can vary between simulation runs; thus
the figures presented here serve as representative examples. Accordingly,
it is possible that some fires are still not contained; those are marked as
red circles, with the size reflecting their intensity. The same logic applies
for extinguished fires, marked as green circles. The “active” label in the
plot describes ongoing fires, while the “total fires” metric represents the
cumulative number of ignited fires throughout the simulation, highlighting
that the fire spread mechanic is working properly.
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Figure 3: Path trajectories of drone agents using A*

Figure 3 the drone-based approach using the A* algorithm, achieving
100% fire suppression (81 out of 81 fires extinguished), with direct and
efficient trajectories and coordinated resource management. In contrast,
Figure 4 illustrates the ACO algorithm, which exhibits adaptive swarm
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behavior but only extinguishes 46.4% of fires within the simulation steps
(no convergence). This example was intentionally selected. Accordingly, this
visualization provides evidence into the drone’s trajectory and suggests that
resource station placement or drone allocation should be adjusted in areas
where fires grew larger.

00

Extinguished: 186 i e
2004 | Extinguished: 46.4% ! o

150

Y Coordinate

0 50 100 150 200 250
o X Coordinate . .
—— Drone Path @® Extinguished Fire Water Station Recharge Station

® Active Fire

Figure 4: Path trajectories of drone agents using Ant Colony Optimization

The trajectory of the ABC algorithm, illustrated in Figure 5, exhibits
a similar trajectory behavior but manages to contain 98.5% of fires. Inter-
estingly, the paths appear less coordinated compared to the A* and ACO
approaches. This phenomenon is likely attributable to ABC’s initial broad
exploration behavior, which uses significant resources, resulting in frequent
visits to resource stations, as evidenced by the denser clustering of paths
around resource stations. While this intensive exploration strategy may
compromise immediate efficiency, it potentially enhances long-term coverage
optimization through comprehensive environmental exploration.

Drones demonstrate efficient resource management by clustering around
resources while maintaining suppression coverage across the 250x250 envi-
ronment. The high suppression effectiveness with minimal path redundancy
supports sustainability, as efficient routing reduces energy consumption and
operational costs, directly addressing RQ3. The successful coordination of
30 autonomous agents validates the scalability potential.
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Figure 5: Path trajectories of drone agents using Artificial Bee Colony

Figure 6 reveals the unique operational characteristics of the aircraft-
based approach. The trajectories exhibit mainly linear patterns, constrained
by mandatory runway (purple cross) interactions for takeoff, landing, and
refueling operations. This infrastructure dependency significantly limits
operational flexibility, particularly impacting the suppression of fires located
at greater distances from the runway, thus achieving only 52.4% suppres-
sion effectiveness with 258 active fires remaining. The resulting coverage
pattern demonstrates clear spatial differences, with reduced effectiveness
in peripheral areas of the simulation environment. This emergent behavior
clearly demonstrates the trade-off between aircraft capacity and operational
flexibility. In contrast, the hybrid approach exhibits observable patterns
suggesting intelligent resource allocation between aircraft and drone tech-
nologies. Figure 7 provides evidence of planes handling most suppression
tasks, while drones appear to provide supplementary coverage for distant
or smaller fires. These behavioral characteristics suggest the potential of
collaborative systems, with additional evidence presented in Section 5.2.
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Figure 6: Path trajectories of aircraft agents
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Figure 7: Path trajectories of drone agents and aircraft
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Collectively, these individual plots address RQ1 and validate the correct
integration of all algorithms into the simulation, showcasing how different
navigation strategies and swarm behaviors emerge in the defined environment.

5.2 Suppression Analysis

To address RQ2, the mean number of active fires at each time step was
calculated across 1000 independent simulation runs. Figure 8 illustrates
these results, with 95% confidence intervals (CI's) depicted as shaded regions
around each suppression line. Wider confidence intervals indicate greater vari-
ability and thus lower consistency in suppression performance. The results
show that drone-based approaches (using ABC, A* and ACO algorithms)
and the hybrid approach maintain consistent suppression performance, as in-
dicated by thinner confidence intervals. In contrast, the plane-only approach
displays the widest confidence intervals and the greatest variability in the
number of active fires throughout the simulations, indicating less consistency
in suppression effectiveness. Overall, these findings suggest that drone-based
and hybrid approaches not only achieve similar levels of effectiveness but
also provide more consistent results than the plane-only approach. The
results also imply that incorporating drones into traditional plane-based
suppression strategies could improve consistency and reliability in wildfire
management within the context of this simulation study.
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Figure 8: Fire progression analysis: active fires across 1,000 simulations with 95%
confidence intervals
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Effectiveness was further assessed by analyzing the number of simula-
tion steps required to achieve complete fire suppression for each approach.
Figure 9 displays the mean suppression times and associated variability (as
standard deviation) for each configuration, with error bars representing a
95% confidence interval. The drone-only approaches: ABC (229.3 £+ 15.9
steps), A* (237.9 £+ 16.2 steps), and ACO (291.6 £+ 16.5 steps) consistently
outperformed the aircraft-only approach (505.1 + 14.6 steps), which also
regularly failed to converge within the defined runtime. The hybrid ap-
proach (drones + aircraft) demonstrated the fastest average suppression
time (223.3 £ 7.0 steps) and the lowest variability, indicating both efficiency
and reliability.
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Figure 9: Mean Fire Extinction Time with 95% Confidence Intervals

5.3 Resource Analysis

Figure 10 reports average water use, energy/fuel consumption, and emis-
sions per simulation with a 95% confidence interval and error bars. It is
evident that the plane approach is by far the most expensive (€62,100) and
pollutant approach in terms of water usage (877,500L) and COg emissions
(218,800 kg). Given the significantly different resource usages, the values
are displayed in log scale to make them more comparable. Additionally, the
cost factor is significantly higher than the compared approaches. The values
for the plane approach go in line with the finding that the plane did not
manage to condemn the fire in the given 1000-step time-frame. Figure 8
demonstrated the downward trend of the slope indicated that the plane
might manage to condemn the fire eventually, therefore making the simula-
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tion converge. However, although possibly being able to condemn the fire,

the plane approach is inferior to the drone’s resource management abilities.

Drones generated the lowest emissions and resource usage, supporting their
role in sustainable firefighting. Accordingly, the hybrid system, despite
higher emissions, achieved the fastest containment and speed-sustainability
trade-off (see Figure: 11). When analyzing cost and water parameters, the
same logic applies: drone approaches outperform their competitors, but the
hybrid approach still significantly outperforms the plane approach. Table 5
summarizes these findings for improved readability.

61 Metrics (Log Scale) 877.5k

Il Water (L) (logio) 18.8k 312.6k
I Emissions (kg CO2) (logio) "

s{ I Cost (€) (logio) 62.1k

IS

4.7k 4.5k 4.4k

Logio Value

ACO Plane Hybrid
Firefighting Approach

Figure 10: Comparative Analysis of Resource Usage and Environmental Impact by
Approach (Log Scale)

Table 5: Resource usage and environmental impact by firefighting approach. Drone
methods use substantially less water, emit fewer CO2 emissions, and cost significantly
less than plane and hybrid approaches.

Approach  Water (L) Emissions (kg CO2)  Cost (€)

Drone Approaches

A* 685 3400 4700
ABC 685 3300 4500
ACO 776 3200 4400
Plane 877500 218800 62100

Hybrid 312600 76 900 21500
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5.4  Computational Complexity

Figure 11 presents the average simulation time required by each path-finding
algorithm (1000 simulation steps). Computational efficiency is a key factor
when deploying such systems; while some algorithms may find the fastest
route, their high computational cost can be a significant trade-off. The
results indicate that all tested path-finding methods achieved comparable
performance levels, with average runtimes ranging from 0.48 seconds (Hybrid)
and 1.71 seconds (A*), based on 1000 simulation iterations.

Algorithm Execution Time Comparison

ABC

| +0.90s

A*

ACO

Algorithm
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0.0 0.5 10 15 2.0 25
Execution Time (seconds)

Figure 11: Computational Complexity Comparison

5.5  Fire Risk Clustering and Analysis

Figure 12 presents a fire risk analysis based on post-simulation data, where
DBSCAN was primarily used to detect high-risk zones—areas where fires
repeatedly re-ignited or were slow to extinguish. K-Means was applied only
when DBSCAN failed to form meaningful clusters. The highlighted scenario
shows a plane approach that did not converge within the 1000-step limit,
emphasizing the need for adaptive fire response tactics. Figure 12 illustrates
a clear correlation between fire density and assigned risk levels. Areas with
a higher concentration of uncontained fires are classified with higher risk
scores (86.6 and 61), compared to largely contained regions (38.7, 51.2, and
56.6). These results provide evidence that the risk assessment methodology
effectively distinguishes between high-risk and low-risk areas, validating its
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potential for data-driven risk analysis and targeted intervention strategies.
Ultimately, this supports the development of more complex and adaptive
suppression behaviors.
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Figure 12: Fire risk assessment using DBSCAN clustering analysis on plane agent
data. The environment is segmented into 5 distinct risk zones based on fire intensity,
suppression delay, and spatial coordinates. Higher risk scores (86.6, 61) indicate
areas with concentrated uncontained fires, while lower scores (38.7, 51.2, 56.6)
represent regions with more successful suppression.

The results hold under the assumption of initiating the simulation with
50 fires as the start; this value resulted as the best trade-off in simulation
runtime and emergent patterns, as illustrated in Table 6. The analysis over
10 independent simulations demonstrates that 50 fires provides sufficient
complexity to observe meaningful fire dynamics and containment behaviors
(99.0% containment rate) while maintaining computational efficiency (0.71
seconds runtime). This configuration proves to be a representative value that
captures emergent fire spread patterns without overwhelming the suppression
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system, while also being small enough to enable running the simulation 1000
times for robust statistical analysis, unlike higher fire counts (500-1000),
which result in bad performing scenarios and significantly longer runtimes
(20-65 seconds).

Table 6: Fire Count Analysis Results (average results based on 10 independent
simulations)

Initial Fires Runtime (s) Fires After 1000 Steps Containment (%)

10 0.56 0.0 100.0
50 0.71 0.5 99.0
100 1.02 0.2 99.8
200 20.96 14 380.4 —2776.1
1000 65.08 30877.1 —2987.7

5.6  Summary of the Results

Concluding, these results address the main research question by providing
evidence on how agent-modeling can be used to evaluate and optimize aerial
wildfire suppression strategies. This developed simulation model can be
customized to specific parameters, making it a valid tool for evaluating
suppression strategies. The exploratory machine learning approach provides
further evaluation possibilities. The simulation results on pathfinding be-
havior show areas of resource constraints, which can be used to adapt and
optimize suppression strategies accordingly (RQ1). While ABM can not pro-
vide proof, the established model provides evidence on emergent behavioral
patterns defined by agent characteristics. Results demonstrate that drone
approaches are cheaper, more consistent, and more sustainable (addressing
RQ2) than plane approaches. Figure 9 and Table 5 suggest that the hybrid
approach may demonstrate an optimal trade-off between sustainability and
effectiveness (addressing RQ3). Particularly in extreme wildfire scenarios,
even marginal improvements in suppression speed are critical. This inte-
grated ABM framework establishes a foundation for transparent, data-driven
fire suppression strategy evaluation applicable to real-world scenarios.

6 DISCUSSION

The main goal of this thesis was to evaluate the effectiveness of autonomous
drone swarms in wildfire prevention, comparing them to traditional manned
aircraft and hybrid approaches. The study aimed to assess these strategies
based on suppression efficiency, emissions, operational cost, and water us-
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age using a custom agent-based simulation framework. The project also
pursued exploring the use of nature-inspired path-finding algorithms and
unsupervised learning for enhancing decision-making in complex, dynamic
fire environments.

6.1 Interpretation of Key Findings

The simulation results reveal significant performance differences across sup-
pression approaches. Drone-only systems achieved fire containment in under
300 steps on average, while plane-only approaches consistently failed to
converge within the simulation timeframe. Hybrid configurations demon-
strated the fastest and most consistent performance, suggesting real-world
applicability through plane-drone collaboration.

The cost analysis showed drone-only systems to be the most cost-efficient
due to lower maintenance, fuel, and infrastructure requirements. Hybrid
configurations, while fastest, still produced high costs due to the need for
runways and refuel stations. These findings align with previous research
employing new ways to fight wildfires and showing their potential (Aydin
et al., 2019) but go further by simulating these metrics in a direct comparison.

Path-finding visualization results illustrated that the algorithms were
functionally integrated and generated distinct emergent behavior, validating
their integration in the simulation. All three path-finding methods (A*, ACO,
ABC) demonstrated comparable performance with acceptable computational
complexity, indicating the simulation’s robustness and adaptability. These
findings support the trend toward electrified, decentralized suppression
systems (Saffre et al., 2022; Stolaroff et al., 2018), while demonstrating
that hybrid approaches may offer the most practical balance between speed,
consistency, and resource efficiency for real-world wildfire management.

6.2 Limitations

While the simulation produced clear trends, it operates under several as-
sumptions and simplifications inherent in the simulation.

PARAMETER CONSTRAINTS The two-dimensional environment intro-
duces dimensional constraints, which lack realistic properties. Especially
for aerial vehicles, a three-dimensional environment is preferable, enabling
the capture of altitude-dependent factors such as visibility, wind effects,
and water /retardant dispersal patterns. Additionally, incorporating realistic
obstacles, dynamic weather patterns, and potentially external data sources
like satellite imagery would improve the model’s accuracy and complexity.
The absence of seasonality is another limitation worth addressing in future
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developments, as the true nature of wildfires is inherently seasonal. Similarly,
both the parameters for the drone and the plane agent were initialized as
fixed values, whereas in reality these values are much more dynamic, with
flight speed changing based on environmental factors and operational focus.
Logically, the speed for firefighting should be different from approaching the
fire site. Additionally, fixed cost and emission parameters are used, whereas
in reality these values fluctuate and depend on factors such as time of day
and location. Location-specific parameters would yield drastically different
results. For instance, electricity prices and emissions vary significantly across
countries; Germany has noticeably higher electricity prices than Hungary
as shown in Figure 1 (eurostat, 2024). While average values serve as a rea-
sonable indicator for the scope of this research, incorporating more realistic
and adaptive parameters is valuable for future development.

MACHINE LEARNING INTEGRATION  While the model lays the foun-
dation for meaningful AI implementation in the future, the agents are still
lacking intelligent behavior. The path-finding algorithms could be seen
as intelligent behavior, since they use swarm properties to make decisions
that appear smart. However, no autonomous decision-making framework is
integrated. The risk assessment explored this direction: being a model-wide
analyzer, which makes the drones all-knowing instead of enabling individual
intelligent decision-making, limits its potential benefits. More intelligent
behavior could also result in too high computation time. Therefore, a trade-
off between these two opposites has to be established to find an optimal
solution.

6.3 Contributions

This thesis contributes an open-source, modular simulation environment that
unifies drone and plane behavior, nature-inspired algorithms, emissions and
cost modeling, and ML-based risk mapping. While prior work has focused
on UAV coordination (Afghah et al., 2019) or suppression techniques (Aydin
et al., 2019), this project integrates direct comparison and scenario testing.
It works as a baseline to build upon, making the integration of potentially
sustainable planes or other UAVs possible. It also demonstrates that perfor-
mance trade-offs are essential when evaluating different approaches, with
certain infrastructure limitations potentially becoming advantages depend-
ing on other parameters. This interdisciplinary synthesize highlights the
potential of collaborative research in sustainable wildfire monitoring. From
a practical perspective, the findings challenge the binary thinking often
applied to wildfire management solutions. Rather than treating drones and
traditional aircraft as competing technologies, dynamic and collaborative
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approaches between a range of technologies should be considered. The
simulation framework provides a foundation for developing decision support
tools.

6.4 Future Research

The motivation for this research is a tool in which environmental data is
used as input, with seasonality, weather, and other unforeseen environmental
changes taken into account. After simulating, the output would be an esti-
mate of the cost and emissions that would be needed to effectively monitor
the given environment. The tool can aid in deciding which firefighting ap-
proach to choose; based on differences in environments and local phenomena,
the results change and provide valuable insight.

This research provides a step in the right direction, motivating cheaper
and more sustainable wildfire prevention techniques. Future development
directions could include integrating realistic terrain, weather, and wind
models; connecting to live data sources such as satellite data and weather
APIs; applying more complex Al-driven decision-making such as deep rein-
forcement learning to enable unsupervised swarm behavior; incorporating
human-swarm interaction drawing inspiration from current research while
ensuring ethical implications and interactive planning (Lewis et al., 2012);
and implementing more realistic parameters such as adaptive cost, emission,
and speed.

Logically, there are various possibilities in different directions. While it
is beneficial to simulate the environment in greater complexity, there is a
trade-off between overcomplicating the model by representing everything as
realistically as possible and producing a fast, usable simulation. This fact
must be carefully considered.

7 CONCLUSION

This thesis presents an integrated simulation framework for evaluating
autonomous wildfire suppression strategies, combining agent-based model-
ing, nature-inspired path-finding, operational cost modeling, and machine
learning-based risk analysis. By implementing drones, planes, and hybrid
strategies all into a single simulation environment, the work enables a
transparent comparison grounded in performance, sustainability, and cost-
efficiency.

The main research question is comprehensively addressed through the
ABM framework’s ability to capture emergent behaviors, path-finding dynam-
ics (RQ1), resource parameters, and effectiveness comparisons (RQ2) across
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suppression approaches, allowing quantification of effectiveness-sustainability
trade-offs (RQ3).

The simulation results demonstrate that drone-based approaches sig-
nificantly outperform traditional aircraft in both suppression speed and
operational consistency, with the hybrid approach excelling at speed.

These findings challenge conventional binary thinking in wildfire man-
agement by demonstrating that collaborative approaches (drone + plane)
offer superior performance characteristics.

This work contributes a modular open-source framework, enabling ef-
fective wildfire research without dismissing sustainability, encouraging a
shift towards scalable, lower-emission fire response systems that reduce
dependency on costly solutions through informed decision-making.

As wildfires continue to grow in frequency and intensity, there is an
urgent need for adaptable, sustainable, and fast deployable solutions. The
work presented here offers a foundation for future research and policymaking.
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Table 7: Water Station Agent Parameters

Parameter Name Default Description
Value

Initialization Parameters

location [x,¥] Position of the water station
capacity 1000 L Maximum water capacity in liters
unique__id int Unique identifier for the agent

typ “water__station”

active T/F Boolean indicating operational status

Operational Parameters

refill_rate 20L Water refilled automatically per step

Environmental Impact

emissions_ factor 0.20 Emissions in kg of COq per liter dis-
pensed
total emissions 0.0 Total emissions accumulated

Cost Metrics

water__cost €0.00061 Cost per liter (Giannakis et al., 2016)
maintenance cost €0.03 Fixed operating cost per step
total__cost €0.0 Cumulative cost of operations

Usage Metrics

total _water_ provided OL Total liters of water provided
refill _events 0 Accumulated number of refill events
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Table 8: Recharge Station Agent Parameters

Parameter Name Default Description
Value
Initialization Parameters
location [x,¥] Position of the recharge station
unique__id int Unique identifier for the agent
typ “recharge_ statich@ent type identifier
active T/F Boolean indicating active status

Operational Parameters

charge rate 100 Energy units provided per recharge step

Environmental Impact

emissions_ factor 0.200 Emissions in kg of COy per kWh pro-

vided. The energy emission varies based
on various factors. The given value is

based on research done by Stolaroff et al.
(2018) which shows energy emission effi-

ciency in drones.

total emissions 0.0 Total emissions accumulated
Cost Metrics
electricity_ cost €0.2872 Electricity cost per kWh taken from the
EU average in 2023 (eurostat, 2024).
maintenance_ cost €0.05 Fixed operational cost per step
total cost €0.0 Total operational cost accumulated

Usage Metrics

total energy provided 0.0 Total kWh of energy provided
recharge events 0 Accumulated number of recharge events
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Table 9: Detailed parameter description of the fire agent

Parameter Name Default Description
Value
Initialization Parameters
location [x,¥] Coordinates of the fire area
intensity 5 Fire intensity on a scale from 1 to 10
size 1 Size of the fire (radius)
unique__id int Unique identifier for the agent
typ "fire" Type identifier for the agent
active T/F Boolean indicating whether the fire is
currently burning
age 0 Age of the fire in simulation steps
water__applied 0 Total water applied to this fire

Spreading Behavior

spread__probability 0.05 Base chance of spreading per step

last__spread_ attempt 0 Step count of last spread attempt

spread__cooldown 10 Minimum steps between spread at-
tempts

Methods and Behaviors

apply_ water(water__amount)— Reduces intensity, extinguishes fire if
intensity < 0.5

step() — Ages fire, increases intensity slightly, at-
tempts spread

attempt_ spread|() — Checks for nearby cells and spreads if
possible

extinguish() — Manually sets fire as extinguished
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Table 10: Runway Agent Parameters

Parameter Name Default Description
Value
Initialization Parameters
location [x,¥] Grid location of the runway
typ “runway”’ Type identifier for the agent
is_ occupied T/F Boolean indicating occupancy status
occupying_ plane None Reference to the plane currently on the
runway
Resource Capacities
fuel__capacity 10000 L Maximum amount of fuel the runway
can store
fuel_level 10000 L Current fuel level in the runway
water capacity 20000 L Maximum amount of water the runway
can store
water_level 20000L Current water level in the runway
Refill Rates (Per Step)
fuel_refill_rate 200L Fuel replenished per simulation step
water_refill_rate 500 L Water replenished per simulation step

Environmental Impact Parameters

fuel emissions factor 0.2 kg CO2 emissions per unit of fuel provided
water__emissions_ factor 0.1 kg CO2 emissions per unit of water pro-
vided

total _emissions 0.0 kg Cumulative emissions generated

Cost Parameters
fuel _cost €0.3 Cost per unit of fuel provided
water__cost €0.05 Cost per unit of water provided
maintenance__cost €0.5 Operational maintenance cost per step
total cost €0.0 Accumulated operational costs

Usage Statistics
planes_ serviced 0 Total number of planes serviced
fuel provided 0.0 Total fuel supplied to planes

water provided 0.0

Total water supplied to planes
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